References

In this page we provide the main references used in the ODINN project, grouped by themes.

Papers using ODINN.jl

  • Universal differential equations for glacier ice flow modelling, Bolibar and Sapienza et al. (2023), Geoscientific Model Development [2].

Papers about Universal Differential Equations and the SciML ecosystem

  • Universal Differential Equations for Scientific Machine Learning, Rackauckas et al. (2020) [1].
  • Stiff neural ordinary differential equations, Kim et al. (2021) [9].
  • Spherical Path Regression through Universal Differential Equations with Applications to Paleomagnetism, Sapienza et al. (preprint) [10].
  • On Neural Differential Equations, Kidger (2022) [11].
  • Physics-Based Deep Learning, Thuerey et al. (2021) [12].

Papers about differentiable programming

  • Differentiable programming for differential equations: a review, Sapienza et al. (preprint) [7].
  • Differentiable programming for Earth System modelling, Gelbrecht et al. (2023), Geoscientific Model Development [13].

Papers about Julia packages

  • Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl, Cranmer (2023), arXiV [14].

Papers about glacier (ice flow) modelling

  • Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model, Morlighem et al. (2013), JGR Earth Surface [3].
  • What is glacier sliding?, Law et al. (2025), arXiV [15].
  • Deep learning the flow law of Antarctic ice shelves, Wang et al. (2025), Science [16].
  • The Physics of Glaciers, Cuffey and Paterson (2010) [8].
  • Ice-Dynamical Glacier Evolution Modeling - A Review, Zekollari et al. (2022) [17].
  • Do existing theories explain seasonal to multi-decadal changes in glacier basal sliding speed?, Gimbert et al. (2021) [18].

Papers about the MassBalanceMachine

  • Machine learning improves seasonal mass balance prediction for unmonitored glaciers, Sjursen et al. (preprint) [19].

Datasets

  • GlaThiDa: Glacier ice thickness database, Welty et al. (2020), ESSD [4].
  • Ice velocity and thickness of the world’s glaciers, Millan et al. (2022), Nature Geoscience [5].
  • Satellite-Derived Annual Glacier Surface Flow Velocity Products for the European Alps, 2015–2021, Rabatel et al. (2023) [6]

Full bibliography

[1]
C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner and A. Ramadhan. Universal Differential Equations for Scientific Machine Learning, arXiv:2001.04385 cs, math, q-bio, stat. Accessed on Jan 15, 2020, arXiv: 2001.04385.
[2]
J. Bolibar, F. Sapienza, F. Maussion, R. Lguensat, B. Wouters and F. Pérez. Universal differential equations for glacier ice flow modelling. Geoscientific Model Development 16, 6671–6687 (2023). Accessed on Jan 29, 2025. Publisher: Copernicus GmbH.
[3]
[4]
E. Welty, M. Zemp, F. Navarro, M. Huss, J. J. Fürst, I. Gärtner-Roer, J. Landmann, H. Machguth, K. Naegeli, L. M. Andreassen, D. Farinotti, H. Li and G. Contributors. Worldwide version-controlled database of glacier thickness observations. Earth System Science Data 12, 3039–3055 (2020). Accessed on Aug 12, 2025. Publisher: Copernicus GmbH.
[5]
R. Millan, J. Mouginot, A. Rabatel and M. Morlighem. Ice velocity and thickness of the world’s glaciers. Nature Geoscience 15, 124–129 (2022). Accessed on Feb 25, 2022.
[6]
A. Rabatel, E. Ducasse, R. Millan and J. Mouginot. Satellite-Derived Annual Glacier Surface Flow Velocity Products for the European Alps, 2015–2021. Data 8, 66 (2023). Accessed on Jan 28, 2025. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.
[7]
F. Sapienza, J. Bolibar, F. Schäfer, B. Groenke, A. Pal, V. Boussange, P. Heimbach, G. Hooker, F. Pérez, P.-O. Persson and C. Rackauckas. Differentiable Programming for Differential Equations: A Review (Jun 2024). Accessed on Sep 2, 2024, arXiv:2406.09699 [physics, stat].
[8]
K. Cuffey and W. Paterson. The Physics of Glaciers (Elsevier Science, 2010).
[9]
S. Kim, W. Ji, S. Deng, Y. Ma and C. Rackauckas. Stiff neural ordinary differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 093122 (2021). Accessed on Feb 25, 2022.
[10]
Facundo Sapienza, Leandro Cesar Gallo, Jordi Bolibar, Fernando Perez and Jonathan Taylor. Spherical Path Regression through Universal Differential Equations with Applications to Paleomagnetism (Feb 2025). Accessed on Feb 7, 2025.
[11]
P. Kidger. On Neural Differential Equations (Feb 2022). Accessed on Dec 29, 2024, arXiv:2202.02435 [cs].
[12]
N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost and K. Um. Physics-based Deep Learning, arXiv:2109.05237 physics. Accessed on Feb 25, 2022, arXiv: 2109.05237.
[13]
M. Gelbrecht, A. White, S. Bathiany and N. Boers. Differentiable programming for Earth system modeling. Geoscientific Model Development 16, 3123–3135 (2023). Accessed on Mar 27, 2025. Publisher: Copernicus GmbH.
[14]
M. Cranmer. Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl (2023). Accessed on Jan 15, 2025. Version Number: 3.
[15]
R. Law, D. Chandler and A. Born. What is glacier sliding (Mar 2025). Accessed on Apr 30, 2025, arXiv:2407.13577 [physics].
[16]
Y. Wang, C.-Y. Lai, D. J. Prior and C. Cowen-Breen. Deep learning the flow law of Antarctic ice shelves. Science 387, 1219–1224 (2025). Accessed on Mar 17, 2025. Publisher: American Association for the Advancement of Science.
[17]
H. Zekollari, M. Huss, D. Farinotti and S. Lhermitte. Ice-Dynamical Glacier Evolution Modeling—A Review. Reviews of Geophysics 60, e2021RG000754 (2022).
[18]
F. Gimbert, A. Gilbert, O. Gagliardini, C. Vincent and L. Moreau. Do Existing Theories Explain Seasonal to Multi-Decadal Changes in Glacier Basal Sliding Speed? Geophysical Research Letters 48, e2021GL092858 (2021). Publisher: Wiley Online Library.
[19]
K. H. Sjursen, J. Bolibar, M. van der Meer, L. M. Andreassen, J. P. Biesheuvel, T. Dunse, M. Huss, F. Maussion, D. R. Rounce and B. Tober. Machine learning improves seasonal mass balance prediction for unmonitored glaciers. EGUsphere, 1–39 (2025). Accessed on Jul 7, 2025. Publisher: Copernicus GmbH.